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Abstract
The sol–gel system which is known, experimentally, to exhibit a power law decay of stress
autocorrelation function has been studied theoretically. A second-order nonlinear differential
equation obtained from Mori’s integro-differential equation is derived which provides the
algebraic decay of a time correlation function. Involved parameters in the expression obtained
are related to exact properties of the corresponding correlation function. The algebraic model
has been applied to Lennard-Jones and sol–gel systems. The model shows the behaviour of
viscosity as has been observed in computer simulation and theoretical studies. The expression
obtained for the viscosity predicts a logarithmic divergence at a critical value of the parameter
in agreement with the prediction of other theories.

1. Introduction

One of the important aspects in the study of micro-dynamics
of a physical system is the nature of relaxation processes.
Depending on the nature of the physical system, the time
correlation function, χ(t) of a given dynamical variable is
known to relax differently. A few examples known in the
wider class of systems for the study of dynamics are simple
exponential, stretched exponential and algebraic decay. A time
correlation function (TCF) for a dilute hard-sphere fluid [1]
follows a simple exponential decay. On the other hand, in a
system in which correlations become stronger, deviations from
simple exponential [2] are observed. In complex systems the
relaxation follows more complicated decays. For example,
in the sol phase, i.e. well below the gelation transition,
one observes a stretched exponential decay of the stress
relaxation function. At the gelation transition, which sees the
transformation of a viscous fluid into an elastic amorphous
solid, the stress relaxation is algebraic in time: χ(t) ∼
t−� [3–5], which results in the logarithmic divergence of
viscosity. Even for simple liquids, the time correlation function
shows t−d/2 (d is dimension) behaviour at long time, known as
the long time tail [6, 7]. The algebraic relaxation or power law
decay has been observed in systems like spin glasses [8, 9],
chaotic systems [10], hierarchical Ising models [11], etc.

In the present work, Mori’s memory function formalism
has been used to understand the conditions under which a
stress time correlation function transforms from a simple
decaying function to a power law decay leading to logarithmic

divergence of viscosity. One of the theoretical methods
to study time development of the TCF of a fluid is by
making use of the Mori–Zwanzig equation [12, 13]. This
method reduces the problem of evaluating the time evolution
of a TCF to the calculation of an appropriate memory
function. Owing to the presence of a projection operator
and the requirement of knowing the time dependence of the
dynamical variable involved, the microscopic calculation of
the memory function becomes a complicated task for real
physical systems. However, the memory function involved is
also known to follow Mori’s equation, leading to a hierarchy of
equations introducing higher-order memory functions. Various
truncation schemes to break the hierarchy of these sets of
equations have been suggested [14–18]. A few such schemes
express a higher-order memory function in terms of a lower-
order memory function. Following a similar procedure in the
present work, we use Mori’s equation to derive a new form
of the time correlation function which decays algebraically,
resulting in power law behaviour of the correlation function.
We find that a second-order nonlinear differential equation with
a hyperbolically decaying solution, at some critical value of the
parameter, transforms to another differential equation whose
solution is algebraic in time. Such a transformation is seen in
the sol–gel transition. It is found that our model could provide
reasonably good results for the sol–gel system in agreement
with the existing theories.

The layout of this paper is as follows. In section 2, we
present the necessary theoretical steps. In section 3, we present
results and discussion. Section 4 contains the summary and
conclusion.
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2. Theory

Transport coefficients can be written as a time integral of
an appropriate time correlation function with the help of the
Green–Kubo relation given as

κ = K
∫ ∞

0
χ(t) dt, (1)

where κ represents a transport coefficient, χ(t) is an
appropriate TCF and K is some thermodynamic quantity. In
particular, κ would represent shear viscosity if χ(t) is the
transverse stress autocorrelation function. Mori’s equation
of motion, which determines the time evolution of a time
correlation function, χ(t), is given as

dχ(t)

dt
+

∫ t

0
M1(t − τ )χ(τ ) dτ = 0, (2)

where M1(t) is the first-order memory function which is known
to satisfy an equation similar to equation (2), i.e.

dM1(t)

dt
+

∫ t

0
M2(t − τ )M1(τ ) dτ = 0. (3)

Combining equations (2) and (3) we get

d2χ(t)

dt2
+ δ1χ(t) +

∫ t

0
M2(t − τ )

dχ(τ)

dτ
dτ = 0, (4)

with δ1 = M1(0). Now we make use of an approximation to
write the integrand as a product of two independent functions
of t and τ :

M2(t − τ )
dχ(τ)

dτ
→ M2(t)

d f (χ(τ ))

dτ

= M2(t)
χα(τ )

χα(0)

dχ(τ)

dτ
. (5)

This approximation is exact for τ = 0 and provides a
correction to the Markovian approximation for τ < t . Writing
M2(t − τ ) as a product of two functions implies that, for
a function even in time, the coupling between t and τ is
ignored. Alternatively, this approximation implies that the
integral (area) to be estimated is replaced approximately by an
equivalent area. The approximation (5) need not be seen in
isolation. Using equations (4) and (5) we obtain the following
differential equation:

d2χ(t)

dt2
+ δ1χ(t) + M2(t)

(χα+1(t) − χα+1(0))

(α + 1)χα(0)
= 0. (6)

We further assume the following form for M2(t):

M2(t) = A
χα+2(t)

χα+2(0)
+ B

χ(t)

χ(0)
. (7)

This approximation is similar to the ideas used in super-cooled
liquids and glass transition theory based on the feedback
phenomenon [19]. From equations (6) and (7) we obtain

d2χ(t)

dt2
+

(
δ1 − B

α + 1

)
χ(t) + (B − A)

(α + 1)

χα+2(t)

χα+1(0)

+ Aχ2α+3(t)

(α + 1)χ2α+3(0)
= 0. (8)

One of the solutions of this equation is given by

χ(t) = χ(0)(1 + γ )
1

α+1

(1 + γ cosh(kt))
1

α+1

, (9)

for α not equal to −1. In the above expression

k = [(α + 1)(B − δ1(α + 1))] 1
2 ,

γ = δ1

B − δ1(α + 2)
,

and

B = δ1(α + 2)(α + 3) − δ2

(α + 1)
.

The δnare related to sum rules of the corresponding TCF
through the following relations:

δ1 = χ2

χ0
and δ2 = χ4

χ2
− χ2

χ0
,

where χ0, χ2 and χ4 are zeroth, second and fourth sum rules of
TCF and are given by the coefficient of short time expansion:

χ(t) = χ0 − t2

2!χ2 + t2

4!χ4 − · · · . (10)

All the parameters appearing above can be related to these sum
rules, expressions for which can be obtained exactly.

For γ = 1, equation (9) reduces to the following
expression:

χ(t) = χ0 sechν

(√
χ2

ν
t

)
, (11)

with ν = 2/(α + 1). Equations (9) and (11) both satisfy sum
rules exactly up to fourth order. Equation (9) has an additional
parameter α and this does not affect the short time properties
of the TCF. These forms (equations (9) and (11)) of MF was
derived earlier by us [15, 16] which decay without showing any
sign of slow dynamics being observed at long times in highly
viscous liquids or glasses.

On the other hand, if we take B = (α + 1)δ1, we obtain
from equation (8) another nonlinear differential equation given
as

d2χ(t)

dt2
− 2b(β + 2)

β2
χβ+1(t) + 4ab(β + 1)χ2β+1(t)

β2
= 0,

(12)
where

β = α + 1, a = χ
−β

0 , b = 2δ1
β(β + 1)

A
.

Here, it may be recalled that the parameter B determines the
strength of the coefficient of the linear term in equation (7). It
is found that one of the solutions of equation (12) is

χ(t) = 1

(a + bt2)1/β
, (13)

which makes χ(t) to decay algebraically with long time
behaviour as t−2/β . Thus, it is noted that by choosing
different strengths of the parameter B , χ(t) transforms from

2
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Figure 1. Variation of β with n∗. The solid line is the result obtained
using theoretical results of sum rules. The dotted line is an
extrapolation up to 2.

exponential-like behaviour to algebraic behaviour with a long
time tail. Here, it may be noted that χ(t) given by equation (13)
provides short time properties of the time correlation function
of the classical system and also shows power law behaviour
at long time. So the algebraic function can cover the decay
of the correlation function exhibited by a wide class of
liquids ranging from inert fluids to gel liquids. Substituting
equations (13) in (1), we obtain the following expression for
the transport coefficient:

κ = K
∫ ∞

0

1

(a + bt2)1/β
dt = K

2a1/β

(
a

b

)1/2

G(β), (14)

where

G(β) = �( 1
2 )�( 1

β
− 1

2 )

�( 1
β
)

. (15)

Comparing the exact short time expansion of χ(t) with that
given by equation (13) we obtain

b

a
= 1

6

(
χ4

χ2
− 3

χ2

χ0

)
, (16)

and

β = (χ4χ0 − 3χ2
2 )

3χ2
2

. (17)

It can be seen that for β = 2, χ(t) decays as t−1 and κ diverges
logarithmically. For β = 2 it is noted that χ4χ0 = 9χ2

2.
Expression (14) for shear viscosity η, with K = 1

V kBT and
χ(t) as the stress correlation function, reduces to

η = n

kBT

χ0√
2βδ1

G(β), (18)

where n, T and kB represent the number density, temperature of
the system and Boltzmann’s constant, respectively. We apply
these formulations to study the viscosity of the system which
undergoes the gelation transition.

Figure 2. Variation of G(β) with β. Divergence of G(β) leads to
divergence of viscosity.

3. Results and discussion

To examine the utility of the memory function derived above,
we first study the behaviour of the parameter β . In order
to calculate the parameter β from equation (17), we require
sum rules of the stress autocorrelation function up to fourth
order. Expressions for the sum rules and their numerical results
are available [20] for Lennard-Jones systems. Therefore, we
calculate β for various densities n∗ = nσ 3 at T ∗ = kBT/ε =
1.06, where ε and σ are well depth and position of the first zero
of the LJ potential. The results obtained are shown as a full line
in figure 1. The dotted line is an extension to β = 2; a point
of divergence of viscosity represents an ideal transition point.
From figure 1, it can be seen that β becomes equal to 2 at a
density n∗ ≈ 1.00. Viscosity rises to many orders of magnitude
just below this transition point. In order to show this explicitly,
we plot G(β) appearing in equation (18) as a function of β

in figure 2. From figure 2 it can be seen that G(β) rises by
two orders of magnitude as one goes from β = 1.2 to 1.97.
The value of β at the triple point is found to be 1.44, which
implies that χ(t) goes as t−1.39, which is to be compared with
t−d/2 for d = 3. We have also found that β decreases with
the increase in temperature and with the decrease in density.
At T ∗ = 1.06 and n∗ = 0.5, the value of β is 0.95 and
χ(t) at long times goes as t−2.1. The values of shear viscosity
calculated from equation (18) at this density and other densities
and temperatures are within 15% from the computer simulation
results [21]. Thus, the model is able to provide very reasonable
results for the viscosity and is also able to give an estimate
about the density and temperature which may correspond to
the glassy/amorphous phase.

A better system where we shall apply our model is a sol–
gel system. In a sol–gel system where power law behaviour
has been observed experimentally, the timescale relevance to
such a system is of the order of microseconds. We first of
all plot χ(t) versus t (s) in figure 3 and compare it with
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Figure 3. Variation of χ(t) with t (s) plotted logarithmically. The
power decay after a few microseconds becomes evident.

that observed by Martin and Wilcoxon [3]. In figure 3, we
set β = 0.135, so as to assign t−0.27 behaviour for long
times, observed experimentally. It is found that our results,
then, are quite similar to the experimental results [5] over the
whole of the time domain. It was pointed out by Martin and
Wilcoxon [3] that, at short times of the order of microseconds,
the correlation function has decayed exponentially. This is
taken care of by the coefficient of short time expansion. The
expression derived here is made to satisfy short time properties
through parameters a and b. Here, it can also be seen that, after
a few microseconds, the correlation in logarithmic scale decays
linearly up to many decades, implying power law decay of the
correlation function.

Next, we attempt to fit the values of viscosity in a sol–gel
system obtained through the following relation [5]:

η(c, L) = Lk/ν η̄[(c − ccrit)L1/ν], (19)

which is similar to finite size scaling relations for the
percolation transition. Here η̄ is a universal function and ν is
the exponent describing the divergence of correlation length.
The values of critical exponent k and ν are 0.75 and 0.88,
respectively. Results for L = 10, 13, 16 and 20 collapse onto
one curve near the critical concentration. We transform linearly
β to 2 + (c − 0.7464)L1.14 in equation (19), keeping the rest of
the parameters as constant. The results obtained are shown as a
solid line in figure 4 for L = 20; the results given by Broderix
et al [5] are also shown as solid circles. It can be seen that our
expression obtained for viscosity can be used to fit the values
of viscosity obtained from scaling relation (equation (19)).

4. Summary and conclusion

In this work, a nonlinear differential equation derived from
Mori’s equation using two plausible approximations has been
transformed into another differential equation, which makes
the time correlation function to decay in algebraic fashion.
The algebraic relaxation of the stress correlation function leads

Figure 4. Plot of viscosity η(c) versus (c − 0.7464) for L = 20 for
three dimensions. Solid line represents results obtained from
equation (18) whereas squares represent results taken from the work
of Broderix et al [5].

to logarithmic divergence of viscosity at particular values
of the parameter. The algebraic relaxation model has been
used to study viscosity in the Lennard-Jones system and
sol–gel systems. It is found that the model could provide
reasonably good results for sol–gel and Lennard-Jones systems
in agreement with the existing theories.
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